PNG1 triangles for tangent plane continuous surfaces on the GPU

نویسندگان

  • Christoph Fünfzig
  • Kerstin Müller
  • Dianne Hansford
  • Gerald E. Farin
چکیده

Improving the visual appearance of coarse triangle meshes is usually done with graphics hardware with per-pixel shading techniques. Improving the appearance at silhouettes is inherently hard, as shading has only a small influence there and the geometry must be corrected. With the new geometry shader stage released with DirectX 10, the functionality to generate new primitives from an input primitive is available. Also the shader can access a restricted primitive neighborhood. In this paper, we present a curved surface patch that can deal with this restricted data available in the geometry shader. A surface patch is defined over a triangle with its vertex normals and the three edge neighbor triangles. Compared to PN triangles, which define a curved patch using just the triangle with its vertex normals, our surface patch is G1 continuous with its three neighboring patches. The patch is obtained by blending two cubic Bézier patches for each triangle edge. In this way, our surface is especially suitable for efficient, high-quality tessellation on the GPU. We show the construction of the surface and how to add special features such as creases. Thus, the appearance of the surface patch can be fine-tuned easily. The surface patch is easy to integrate into existing polygonal modeling and rendering environments. We give some examples using Autodesk Maya R ©.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Polynomial Surfaces Interpolating Arbitrary Triangulations

Triangular Bézier patches are an important tool for defining smooth surfaces over arbitrary triangular meshes. The previously introduced 4-split method interpolates the vertices of a 2-manifold triangle mesh by a set of tangent plane continuous triangular Bézier patches of degree five. The resulting surface has an explicit closed form representation and is defined locally. In this paper, we int...

متن کامل

Tangential Distance Fields for Mesh Silhouette Analysis

We consider a tangent-space representation of surfaces which maps each point on a surface to the tangent plane of the surface at that point. Such representations are known to facilitate the solution of several visibility problems, in particular, those involving silhouette analysis. In this paper, we introduce a novel class of distance fields for a given surface defined by its tangent planes. At...

متن کامل

On the number of line tangents to four triangles in three-dimensional space

We establish upper and lower bounds on the number of connected components of lines tangent to four triangles in . We show that four triangles in may admit at least 88 tangent lines, and at most 216 isolated tangent lines, or an infinity (this may happen if the lines supporting the sides of the triangles are not in general position). In the latter case, the tangent lines may form up to 216 conne...

متن کامل

Adaptive terrain rendering with smooth subdivision surfaces on the GPU

This bachelor thesis presents two new methods for effective parallel terrain rendering. First, a new parallel adaptive terrain rendering method on the GPU, named “Parallel adaptive refinement” (PAR), is presented. The method generates view-dependent meshes consisting entirely of right-isosceles triangles. In a top-down refinement, a coarse input mesh is refined directly in the rendering pipelin...

متن کامل

Surface Approximation Using Geometric Hermite Patches

A high-order-of-approximation surface patch is used to construct continuous, approximating surfaces. This patch, together with a relaxation of tangent plane continuity, is used to approximate offset surfaces, algebraic surfaces, and S-patches.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008